Square graph

From Graph

This article defines a particular undirected graph, i.e., the definition here determines the graph uniquely up to graph isomorphism.
View a complete list of particular undirected graphs

Definition

This undirected graph is defined in the following equivalent ways:

  1. It is the cycle graph on 4 vertices, denoted C4.
  2. It is the complete bipartite graph K2,2
  3. It is the 2-dimensional hypercube graph.
  4. It is the 2-dimensional hyperoctahedron graph.

Explicit descriptions

Description of vertex set and edge set

Vertex set: {1,2,3,4}

Edge set: {{1,2},{2,3},{3,4},{1,4}}

Note that with this description, the two parts in a bipartite graph description are {1,3} and {2,4}.

Adjacency matrix

With the ordering of the vertex set and edge set given above, the adjacency matrix is:

(0101101001011010)


Arithmetic functions

Size measures

Function Value Explanation
size of vertex set 4 As cycle graph Cn,n=4: n=4
As complete bipartite graph Km,n,m=n=2: m+n=2+2=4
As n-dimensional hypercube, n=2: 2n=22=4
size of edge set 4 As cycle graph Cn,n=4: n=4
As complete bipartite graph Km,n,m=n=2: mn=2(2)=4
As n-dimensional hypercube, n=2: n2n1=2221=4

Numerical invariants associated with vertices

Since the graph is a vertex-transitive graph, any numerical invariant associated to a vertex must be equal on all vertices of the graph. Below are listed some of these invariants:

Function Value Explanation
degree of a vertex 2 As cycle graph Cn,n=4: 2 (independent of n)
As complete bipartite graph Km,n,m=n=2: Since m,n are equal, the graph is vertex-transitive and (m=n)-regular, so we get m=n=2
As n-dimensional hypercube, n=2: n=2
As n-dimensional hyperoctahedron, n=2: 2n2=2(2)2=2
eccentricity of a vertex 2 As cycle graph Cn,n=4: greatest integer of n/2 equals greater integer of 4/2 equals 2
As complete bipartite graph Km,n,m=n=2: 2 (independent of m,n, though it uses that both numbers are greater than 1)
As n-dimensional hypercube, n=2: n=2
As n-dimensional hyperoctahedron, n=2: 2 (independent of n, for n2)

Other numerical invariants

Function Value Explanation
clique number 2 As cycle graph Cn,n=4: 2 (independent of n for n4)
As Km,n,m=n=2: 2 (independent of m,n, follows from being bipartite)
As n-dimensional hypercube, n=2: 2 (independent of n)
independence number 2 As cycle graph Cn,n=4: greatest integer of n/2 equals greatest integer of 4/2 equals 2
As Km,n,m=n=2: max{m,n}=max{2,2}=2
As n-dimensional hypercube, n=2: 2n1=221=2
chromatic number 2 As cycle graph Cn,n=4: 2 (in general, it is 2 for even n and 3 for odd n
As Km,n,m=n=2: 2 (independent of m,n, follows from being bipartite)
As n-dimensional hypercube, n=2: 2 (independent of n, follows from being bipartite)
radius of a graph 2 Due to vertex-transitivity, the radius equals the eccentricity of any vertex, which has been computed above.
diameter of a graph 2 Due to vertex-transitivity, the radius equals the eccentricity of any vertex, which has been computed above.
odd girth infinite As cycle graph Cn,n=4: infinite (since n even)
As Km,n,m=n=2: infinite, since bipartite
As n-dimensional hypercube, n=2: infinite, since bipartite
even girth 4 As cycle graph Cn,n=4: n=4 (since n even)
As complete bipartite graph Km,n,m=n=2: 4 (independent of m,n as long as both are greater than 1)
As n-dimensional hypercube, n=2: 4 (independent of n for n2)
girth of a graph 4 As cycle graph Cn,n=4: n=4
As complete bipartite graph Km,n,m=n=2: 4 (independent of m,n as long as both are greater than 1)
As n-dimensional hypercube, n=2: 4 (independent of n for n2)

Graph properties

Property Satisfied? Explanation
connected graph Yes
regular graph Yes all vertices have degree two
vertex-transitive graph Yes
cubic graph No
edge-transitive graph Yes
symmetric graph Yes
distance-transitive graph Yes
bridgeless graph Yes
strongly regular graph Yes The graph is a srg(4,2,0,2)
bipartite graph Yes

Graph operations

Operation Graph obtained as a result of the operation
complement of a graph matching graph on 4 vertices
line graph isomorphic to the original graph
prism of a graph cube graph

Algebraic theory

The adjacency matrix is:

(0101101001011010)

This matrix is uniquely defined up to conjugation by permutations. Below are some important associated algebraic invariants:

Algebraic invariant Value Explanation
characteristic polynomial t44t2
minimal polynomial t34t
rank of adjacency matrix 2
eigenvalues (roots of characteristic polynomial) 0 (multiplicity 2), 2, -2 We can compute these eigenvalues directly using the fact that the graph is a srg(4,2,0,2)

Realization

As Cayley graph

Note that for this to be the Cayley graph of a group, the group must have order 4, and the generating set with respect to which we construct the Cayley graph must be a symmetric subset of the group of size 2.

Group Choice of symmetric set that is a generating set for which the Cayley graph is this
cyclic group:Z4 cyclic generator and its inverse
Klein four-group two distinct elements of order two

Geometric embeddings