Ramsey number

From Graph
Revision as of 18:37, 28 May 2012 by Vipul (talk | contribs) (Created page with "==Definition== ===For two parameters=== Suppose <matH>m,n</math> are positive integers. The '''Ramsey number''' <math>R(m,n)</math> is defined as the smallest positive integ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Definition

For two parameters

Suppose m,n are positive integers. The Ramsey number R(m,n) is defined as the smallest positive integer r such that, for any graph whose vertex set has size r, either the clique number is at least m or the independence number is at least n. More explicitly, for any graph whose vertex set has size r, the graph must either contain a m-clique (i.e., m vertices all adjacent to each other) or an independent set of size n (n vertices no two of which are adjacent to each other).

Facts