Square graph

From Graph
Revision as of 16:56, 29 May 2012 by Vipul (talk | contribs)

This article defines a particular undirected graph, i.e., the definition here determines the graph uniquely up to graph isomorphism.
View a complete list of particular undirected graphs

Definition

This undirected graph is defined in the following equivalent ways:

  1. It is the cycle graph on 4 vertices, denoted .
  2. It is the complete bipartite graph
  3. It is the 2-dimensional hypercube graph.
  4. It is the 2-dimensional hyperoctahedron graph.

Explicit descriptions

Description of vertex set and edge set

Vertex set:

Edge set:

Note that with this description, the two parts in a bipartite graph description are and .

Adjacency matrix

With the ordering of the vertex set and edge set given above, the adjacency matrix is:


Arithmetic functions

Size measures

Function Value Explanation
size of vertex set 4 As cycle graph :
As complete bipartite graph :
As -dimensional hypercube, :
size of edge set 4 As cycle graph :
As complete bipartite graph :
As -dimensional hypercube, :

Numerical invariants associated with vertices

Since the graph is a vertex-transitive graph, any numerical invariant associated to a vertex must be equal on all vertices of the graph. Below are listed some of these invariants:

Function Value Explanation
degree of a vertex 2 As cycle graph : 2 (independent of )
As complete bipartite graph : Since are equal, the graph is vertex-transitive and -regular, so we get
As -dimensional hypercube, :
eccentricity of a vertex 2 As cycle graph : greatest integer of equals greater integer of 4/2 equals 2
As complete bipartite graph : 2 (independent of , though it uses that both numbers are greater than 1)
As -dimensional hypercube, :

Other numerical invariants

Function Value Explanation
clique number 2 As cycle graph : 2 (independent of for )
As : 2 (independent of , follows from being bipartite)
As -dimensional hypercube, : 2 (independent of )
independence number 2 As cycle graph : greatest integer of equals greatest integer of 4/2 equals 2
As :
As -dimensional hypercube, :
chromatic number 2 As cycle graph : 2 (in general, it is 2 for even and 3 for odd
As : 2 (independent of , follows from being bipartite)
As -dimensional hypercube, : 2 (independent of , follows from being bipartite)
radius of a graph 2 Due to vertex-transitivity, the radius equals the eccentricity of any vertex, which has been computed above.
diameter of a graph 2 Due to vertex-transitivity, the radius equals the eccentricity of any vertex, which has been computed above.
odd girth infinite As cycle graph : infinite (since even)
As : infinite, since bipartite
As -dimensional hypercube, : infinite, since bipartite
even girth 4 As cycle graph : (since even)
As complete bipartite graph : 4 (independent of as long as both are greater than 1)
As -dimensional hypercube, : 4 (independent of for )
girth of a graph 4 As cycle graph :
As complete bipartite graph : 4 (independent of as long as both are greater than 1)
As -dimensional hypercube, : 4 (independent of for )

Graph properties

Property Satisfied? Explanation
connected graph Yes
regular graph Yes all vertices have degree two
vertex-transitive graph Yes
cubic graph No
edge-transitive graph Yes
symmetric graph Yes
distance-transitive graph Yes
bridgeless graph Yes
strongly regular graph Yes
bipartite graph Yes

Graph operations

Operation Graph obtained as a result of the operation
complement of a graph matching graph on 4 vertices
line graph isomorphic to the original graph
prism of a graph cube graph

Algebraic theory

The adjacency matrix is:

This matrix is uniquely defined up to conjugation by permutations. Below are some important associated algebraic invariants:

Algebraic invariant Value Explanation
characteristic polynomial Fill this in later
minimal polynomial Fill this in later
rank of adjacency matrix 2
eigenvalues (roots of characteristic polynomial)

Realization

As Cayley graph

Geometric embeddings